CHAPTER

ANALYTIC FUNCTIONS

We now consider functions of a complex variable and develop a theory of differenti-
ation for them. The main goal of the chapter is to introduce analytic functions, which
play a central role in complex analysis. :

11. FUNCTIONS OF A COMPLEX VARIABLE

Let S be a set of complex numbers. A function f defined on § is a rule that assigns to
~ each z in S a complex number w. The number w is called the value of f at z and is
denoted by f(z); thatis, w = f(z). The set S is called the domain of definition of f e

It must be emphasized that both a domain of definition and a rule are needed in
order for a function to be well defined. When the domain of definition is not mentioned,
we agree that the largest possible set is to be taken. Also, it is not always convenient
to use notation that distinguishes between a given function and its values.

EXAMPLE 1. If f is defined on the set z 7 0 by means of the equation w = 1/z, it
may be referred to only as the function w = 1/z, or simply the function 1/z.

Suppose that w = u + {v is the value of a function f at z = x -+ iy, so that

u+iv=f(x+iy).

* Although the domain of definition is often 2 domain as defined in Sec. 10, it need not be.

33



34  AnaLyTic FUNCTIONS : CHAP, 2

Each of the real numbers « and v depends on the real variables x and y, and it follows
that f(z) can be expressed in terms of a pair of real-valued functions of the real
variables x and y:

(1) f@)=ulx, yy +ivlx, y).

If the polar coordinates » and €, instead of x and y, are used, then
u+iv=fre?,

where w =u + iv and z = re'?, In that case, we may write

(2) F@ =ulr,8) +ivir,d).

EXAMPLE 2. If f(z) = z%, then

flx+iy)=x+iv) =x>—y2+i2xy.
Hence

u(x, y) =x* — y2 and w{x, y) =2xy.
When polar coordinates are used,

fre'®y = (re’®)? =r2%'% = 12 cos 260 + ir® sin 26.
Consequently,
u(r,8) =r>cos26 and v(r,8) =r>sin26.

If, in either of equations (1) and (2), the function v .always has value zero, then
the value of f is always real. Thatis, f is a real-valued function of a complex variable.

EXAMPLE 3. A real-valued function that is used to illustrate some important
concepts later in this chapter is

f@ =z =x+y? +i0.

If n is zero or a positive integer and if ay, @y, a5, . . . , a, are complex constants,
where a,, # 0, the function

PR =ay+az+az’+ - +a,"

is a polynomial of degree n. Note that the sum here has a finite nurnber of terms and that
the domain of definition is the entire z plane. Quotients P(z)/Q(z) of polynomials are
called rational functions and are defined at each point z where @(z) # 0. Polynomials
and rational functions constitute elementary, but important, classes of functions of a
complex variable.
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A generalization of the concept of function is a rule that assigns more than one
value to @ point z in the domain of definition. These multiple-valued functions occur
in the theory of functions of a complex variable, just as they do in the case of real
variables. When multiple-valued functions are studied, usually just one of the possible
values assigned to each point is taken, in a systematic manner, and a (single-valued)
function is constructed from the multiple-valued function.

EXAMPLE 4. Let z denote any nonzero complex number. We know from Sec. 8
that z'/2 has the two values '

21/2 = :I:,\/; exp(i%) ,

where r = |z| and ©(—nw < © < m) s the principal value of arg z. But, if we choose
only the positive value of +./r and write

3 f(z)=«/’r_exp(ig)—) (r>0, —ﬁ' <@ <),

the (single-valued) function (3) is well defined on the set of nonzero numbers in the 2
plane. Since zero is the only square root of zero, we also write f(0) = 0. The function
[ is then well defined on the entire plane.

EXERCISES

1. For each of the functions below, describe the domain of definition that is understood:

1. = Arel 1)
@f@=Fr ©F© —Arg(z),

z 1
OI@== @@=

_Ans.(a)z# i, (c)Rez#0.
2. Write the function f(z} = 23 + 2 + 1in the form F@=ulx, yy +ivix, y).
Ans. (x3 = 3xy? 4+ x 4+ 1) +iGxly — Y2 + y).

3. Suppose that f(z) =x% — y> — 2y +i(2x — 2xy), where z = x + iy. Use the expres-
sions (see Sec. 5)

2+7 z—1Z
x=—— and y=-—-
2 2i
to write f(z) in terms of z, and simplify the result,

Ans. 7% 4 2iz.
4. Write the function

f(z)=z+% (z#£0)
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in the form f(z) = u(r, 8} + iv(r, 8).

Ans. (r + -1~> cos @ +i(r - -}i) sin 8.
r r

12. MAPPINGS

Properties of a real-valued function of a real variable are often exhibited by the graph
of the function. But when w = f(z), where z and w are complex, no such convenient
graphical representation of the function f is available because each of the numbers
z and w is located in a plane rather than on a line. One can, however, display some
information about the function by indicating pairs of corresponding points z = (x, ¥)
and w = (u, v). Todo this, it is generally simpler to draw the z and w planes separately.

When a function f is thought of in this way, it is often referred to as a mapping,
or transformation. The image of a point z in the domain of definition § is the point
w = f(z), and the set of images of all points in a set 7" that is contained in S is called
the image of T'. The image of the entire domain of definition S is called the range of
[ The inverse image of a point w is the set of all points z in the domain of definition
of f that have w as their image. The inverse image of a point may contain just one
point, many points, or none at all. The last case occurs, of course, when w is not in the
range of f. ' '

Terms such as rransiation, roration, and reflection are used to convey dominant
geometric characteristics of certain rnappings. In such cases, it is sometimes convenient
to consider the z and w planes to be the same. For example, the mapping

w=z+1l=x+1)+iy,

where z = x + iy, can be thought of as a translation of each point z one unit to the
right. Since i = ¢'*/2, the mapping

, ) ig
w=iz =rexp[:(9 + E):I,

where z = re'®, rotates the radius vector for each nonzero point z through a right angle
about the origin in the counterclockwise direction; and the mapping

wW=7=x—iy

transforms each point z = x + iy into its reflection in the real axis.

More information is usually exhibited by sketching images of curves and regions
than by simply indicating images of individual points. In the following examples, we
iHustrate this with the transformation w = z°.

We begin by finding the images of some curves in the z plane.
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EXAMPLE 1. According to Example 2 in Sec. 11, the mapping w = z° can be
thought of as the transformation

1) u=x2—y2, u=2xy

from the xy plane to the uv plane. This form of the mapping is especially useful in
finding the images of certain hyperbolas. '
It is easy to show, for instance, that each branch of a hyperbola

2) Z—yi=c (>0

15 mapped in a one to one manner onto the vertical line « = ¢;. We start by noting
from the first of equations (1) that ¥ = ¢| when (x, y) is a point lying on either branch.
When, in particular, it lies on the right-hand branch, the second of equations (1) tells

us that v = 2y./y% + ¢,. Thus the image of the right-hand branch can be expressed
parametrically as ‘

u=c;, v=2y/y+¢ (—00 < y < 00);

and it is evident that the image of a point (x, ¥) on that branch moves upward along the
entire line as (x, y) traces out the branch in the upward direction (Fig. 17). Likewise,
since the pair of equations

u=cy, v=-2y/yi4¢ (—o0 <y < 00)

furnishes a parametric representation for the image of the left-hanid branch of the
hyperbola, the image of a point going downward along the entire left-hand branch
1s seen to move up the entire line ¥ = c,.

On the other hand, each branch of a hyperbola

(3) - Ziy=c,  (e>0)

is transformed into the line v = c;, as indicated in Fig. 17. To verify this, we note from
the second of equations (1) that v = ¢, when (x, y) is a point on either branch. Suppose

u=c; >0

= —=f==v=¢>0
A AV
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-

FIGURE 17

w=22.
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that it lies on the branch lying in the first quadrant. Then, since y = ¢,/(2x), the first
of equations (1) reveals that the branch’s image has parametric representation

U=x"——=, v=0p (0 <x<o0)’
4x2 '
Observe that
limu=—-—0c0 and lim u=o00.
x—0 A= O

x>0

Since # depends continuously on x, then, it is clear thatas (x, ) travels down the entire
upper branch of hyperbola (3), its image moves to the right along the entire horizontal
line v = ¢». Inasmuch as the image of the lower branch has parametric representation

CZ
u=—% y, V=g (—oo<y<()
_ 4V2 ;
and since
Im u=-o and 11m =00,
Y =00 y—0

. y=0

it follows that the image of a point moving upward along the entire lower branch also
travels to the right along the entire Iine v = ¢, (see Fig. 17).

We shall now use Example 1 to find the image of a certain region.

EXAMPLE 2. The domain x > 0, y > 0, xy < 1 consists of all points lying on the
upper branches of hyperbolas from the family 2xy = ¢, where 0 < ¢ < 2 (Fig. 18). We
know from Example 1 that as a point travels downward along the entirety of one of
these branches, its image under the transformation w = z moves to the right along
the entire line v = ¢. Since, for all values of ¢ between 0 and 2, the branches fill out

y v
A D ]
D’ 2i E
E
FIGURE 18
B c x A B’

w = z%
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the domain x > 0, y > 0, xy < 1, that domain is mapped onto the horizontal strip
O<v<2

In view of equations (1), the image of a point (0, y) in the z plane is (~y2, 0).
Hence as (0, y) travels downward to the origin along the y axis, its image moves to the
right along the negative u axis and reaches the origin in the w plane. Then, since the
image of a point (x, 0) is (x2, 0), that image moves to the right from the origin along
the u axis as (x, 0) moves to the right from the origin along the x axis. The image
of the upper branch of the hyperbola xy = 1 is, of course, the horizontal line v = 2.
Evidently, then, the closed region x > 0, y > 0, xy < 1 is mapped onto the closed strip
0 <wv <2, as indicated in Fig. 18.

Our last example here illustrates how polar coordinates can be useful in analyzing
certain mappings.

EXAMPLE 3. The mnapping w = z° becomes

w = rlei2f
when z = re'?. Hence if w = pe'® we have pe'? = r2e?%; and the statement in italics
near the beginning of Sec. 8 tells us that

p=r% and ¢ =20+ 2knm,

where k has one of the values k = 0, &1, 2, . .. . Evidently, then, the image of any
nonzero point z is found by squaring the modulus of z and doubling a value of arg z. |

Observe that points z = rge’? on a circle r = fp are transformed into points
w = rge'® on the circle p = rd. As a point on the first circle moves counterclockwise
from the positive real axis to the positive imaginary axis, its tmage on the second
circle moves counterclockwise from the positive real axis to the negative real axis (see
Fig. 19). So, as all possible positive values of ry are chosen, the corresponding arcs
in the z and w planes fill out the first quadrant and the upper half plane, respectively.
The transformation w = z° is, then, a one to one mapping of the first quadrant r > 0,
- 0 <6 <7/2 in the z plane onto the upper half p > 0,0 =< ¢ <7 of the w plane, as
indicated in Fig. 19. The point z = 0 is, of course, mapped onto the point w = 0.

The transformation w = z* also maps the upper haif plane r > 0, 0 <6 < 7 onio,
the entire w plane. However, in this case, the transformation is not one to one since

FIGURE 1%

w =ZZ.
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~ both the positive and negative real axes in the 7 plane are mapped onto the positive

real axis in the w plane. :

When r is a positive integer greater than 2, various mapping properties of the
transformation w = z%, or pe’® = r"ef, are similar to those of w = z2. Such a
transformation maps the entire z plane onto the entire w plane, where each nonzero
point in the w plane is the image of » distinct points in the z plane. The circle r =rg
is mapped onto the circle p = rg; and the sectorr < ry, 0 <8 < 2x/n is mapped onto
the disk p < rg, but riot in a one to one manner.

13. MAPPINGS BY THE EXPONENTIAL FUNCTION

In Chap. 3 we shall introduce and develop properties of a number of elementary func-
tions which do not involve polynomials. That chapter will start with the exponential
function

(n el = e*e?? (z=x +iy),

the two factors e* and ¢ being well defined at this time (see Sec. 6). Note that
definition (1), which can also be written

ex+1‘y —_ exeiy,
is suggested by the familiar property |
gETE — Miph
of the exponential function in calculus.
The object of this section is to use the function e° to provide the reader with

additional examples of mappings that continue to be reasonabty simple. We begin by
examining the images of vertical and horizontal lines.

EXAMPLE 1. The transformation
) w = e
can‘'be written pe'? = e*e’?, where z = x + iy and w = pe'®. Thus p = ¢* and

¢ =y + 2nm, where n is some integer (see Sec, 8); and transformation (2) can be
expressed in the form

- (3) i p=e, ¢p=y.

The image of a typical point z = (¢;, ¥} on a vertical line x = ¢; has polar
coordinates p = exp ¢ and ¢ = y in the w plane. That image moves counterclockwise
around the circle shown in Fig. 20 as z moves up the line, The image of the line is
evidently the entire circle; and each point on the circle is the image of an infinite
number of points, spaced 2 units apart, along the line.
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X=0C
/
. 2 s ] . y = C‘_! - I/
/
‘ ’4‘\02

x ol - exXpey U
FIGURE 20

w = exp 2.

A horizontal line y = ¢, is mapped in a one to one manner onto the ray ¢ = ¢,. To
see that this is 50, we note that the.image of a point z = (x, ¢;) has polar coordinates
p = ¢ and ¢ = c,. Evidently, then, as that point z moves along the entire line from
left to right, its image moves outward along the entire ray ¢ = ¢, as indicated in
Fig. 20.

Vertical and horizontal line seg*nents are mapped onto portions of circles and rays,
respectively, and images of various regions are readily obtained from observations
made in Example 1. This is illustrated in the following example.

EXAMPLE 2. Let us show that the transformation w = e* maps the rectangular
regiona <x <b,c<y=<dontotheregione® < p<e’,c< ¢ < d. The two regions
and corresponding parts of their boundaries are indicated in Fig. 21. The vertical line
segment AD is mapped onto the arc p = €%, ¢ < ¢ < d, which is labeled A’D’. The
images of vertical line segments to the right of AD and joining the horizontal parts
of the boundary are larger arcs; eventually, the image of the line segment BC is the
arc p =e”, ¢ < ¢ < d, labeled B'C’. The mapping is one to one if d — ¢ < 2x. In
particular, if ¢ = 0 and d = 7, then 0 < ¢ < ; and the rectangular region is mapped
onto half of a circular ring, as shown in Fig. 8, Appendix 2.

y v c
4 D | C -
Dr S
| >
\ \ B’
R L -
¢ A B ¢=d_~%
p=c
0 a b x 0 u
FIGURE 21

w=¢exXpz.
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Qur final example here uses the images of horizontal lines to find the image of a

horizontal strip.

EXAMPLE 3, When w = ¢, the image of the infinite strip 0 < y < 7 is the upper
half v > 0 of the w plane (Fig. 22). This is seen by recalling from Example 1 how
a horizontal line y = ¢ is transformed into a ray ¢ = c from the origin. As the real
number ¢ increases from ¢ =0 (o ¢ = 7, the y intercepts of the lines increase from
() to 7 and the angles of inclination of the rays increase from ¢ = 0 to ¢ = . This
mapping is also shown in Fig. 6 of Appendix 2, where corresponding points on the
boundaries of the two regions are indicated.

bi1] ’

o x o u
FIGURE 22
W= expz.
EXERCISES
1. By referring to Example 1 in Sec. 12, find a domain in the z plane whose image under

the transformation w = z° is the square domain in the w plane bounded by the lines
u=lu=2v=1and v =2 (SeeFig. 2, Appendix 2.)

. Find and sketch, showing corresponding orientations, the images of the hyperbolas

¥ y2 =c {cp<0) and 2xy=cy(cy <0)

under the transformation w = z2.

. Sketch the region onto which the sector r < 1,0 < 6 < /4 is mapped by the transfor-

mation (@) w = z°; Brw =2 () w=1z*

. Show that the lines ay = x {a # 0) are mapped onto the spirals p = exp{a¢) under the

transformation w = exp z, where w = p exp(i¢).

. By considering the images of horizontal line segments, verify that the image of the

rectangularregiona = x < b, ¢ < y < d under the transformation w = exp z is the region
e’ <p<eb c<¢<d asshownin Fig. 21 (Sec. 13).

. Verify the mapping of the region and boundary shown in Fig, 7 of Appendix 2, where

the transformation is w = exp z.

. Find the image of the semi-infinite strip x > 0,0 < y < x under the transformation

w = exp z, and label corresponding portions of the boundaries.

T e S e A L e e e
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- 8. One interpretation of a function w = f(z) = u(x, y) + iv(x, ¥) is that of a vector field in
the domain of definition of f. The function assigns a vector w, with components u (x, y)
and v(x, y), to each point z at which it is defined. Indicate graphically the vector fields
represented by (o) w =iz; (b) w = z/|z|.

N

14. LIMITS

Let a function f be defined at all points z in some deleted neighborhood (Sec. 10) of
zp- The statement that the limit of f(z) as z approaches z is a number wy, or that

(1) lim f(z) = wy,
=g

means that the point w = f(z) can be made arbitrarily close to wy if we choose the
point z close enough to z, but distinct from it. We now express the definition of limit
in a precise and usable form.

Staternent (1) means that, for each positive number &, there is a positive number
& such that

{2 | f(z) —wyl <& whenever 0 < [z —zg] < 8.

Geometrically, this definition says that, for each & neighborhood |w ~ wy| < & of wy,
there is a deleted & neighborhood 0 < |z — zg| < & of 7 such that every point z in it
has an image w lying in the ¢ neighborhood (Fig. 23). Note that even though all points
in the deleted neighborhood 0 < |z — Zg| < & are to be considered, their images need
not fill up the entire neighborhood |w — wg| < &. If S has the constant value wy, for
instance, the image of z is always the center of that neighborhood. Note, too, that once
a ¢ has been found, it can be replaced by any smaller posttive number, such as §/2.

Ol ¥  FIGURE 23

It is easy to show that when a limit of a Junction f(z7) exists at a point Zg, it is
unigque. To do this, we suppose that

lim f(z)=wy and lim f(z) =w,.
27y . Fa )

Then, for any positive number &, there are positive numbers 5, and §; such that

|f(z) —wol <& whenever 0 < |z —zqf < &
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and
|f(z) —wil <e whenever 0 < |z—zg| <38y

S0if 0 < |z — zp| < 4, where § denotes the smaller of the two numbers 8, and 8, we
find that

lwy = wol = |LF (@) — wol = Lf (2) — w1l | f(2) — wpl + | f{2) —wy| <& +e=2e.
But |w; — wy| is a nonnegative constant, and & can be chosen arbitrarily smail. Hence
wy—we=0, or w;=uw

Definition (2) requires that f be defined at all points in some deleted neighbor-
hood of zg. Such a deleted neighborhood, of course, always exists when zg is an interior
point of a region on which f is'defined. We can extend the definition of limit to the case
in which zg is a boundary point of the region by agreeing that the first of inequalities
(2) need be satisfied by only those points z that lie in both the region and the deleted
neighborhood.

EXAMPLE 1. Letus show that if f(z) =iz/2 in the open disk |z| < 1, then
i
3 li =-,
(3) lim f (@ >

the point 1 being on the boundary of the domain of definition of f. Observe that when
z is in the region |z| < 1,
lz—H

2

23]
2 2

)
‘f(Z)_E

Hence, for any such z and any positive number ¢ (see Fig. 24),

<& whenever 0 <|z—1| <2e.

I
‘f(Z)_E

SRR
O P LAY

FIGURE 24
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Thus condition (2) is satisfied by points in the region |z| < 1 when § is equal to 2¢ or
any smaller positive number.

If zy is an interior point of the domain of definition of f, and limit (1) is to
exist, the first of inequalities (2) must hold for al! points in the deleted neighborhood
0 < |z — zy| < 8. Thus the symbol z — z; implies that z is allowed to approach z,
in an arbitrary manner, not just from some particular direction. The next example
emphasizes this.

EXAMPLE 2, If

) f@)==,
) Z

the limit.

&) lim f(z)

does not exist. For, if it did exist, it could be found by letting the point z = (x, y)

approach the origin in any manner. But when z = (x, 0) is a nonzero point on the real
axis (Fig. 25), :

Thus, by letting z approach the origin along the real axis, we would find that the desired
limit is 1. An approach along the imaginary axis would, on the other hand, yield the
limit —1. Since a limit is unigue, we must conclude that limit (5) does not exist.

z=(0.y¢

0, 0) z=(x,0) x

FIGURE 25

e g ) e AT —rT
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While definition (2) provides a means of testing whether a given point wy is a
limit, it does not directly provide a method for determining that limit. Theorems on
limits, presented in the next section, will enable us to actually find many limits.

15. THEOREMS ON LIMITS

We can expedite our treatment of limits by establishing a connection between limits
of functions of a complex variable and limits of real-valued functions of two real
variables. Since limits of the latter type are studied in calculus, we use their definition
and properties freely.

Theorem 1. Sup_po.ﬁe thar

F@y=u(x, y) +iv(r,y), zo=xo+iye, and wp=ug+ivg.

Then
N} _ lim f(z2)=wy
=g
if and only if
(2) lm ulx,v)=uy and Hm vix, ¥) = v, '
W bgae YT g T =

To prove the theorem, we first assume that limits (2) hold and obtain limit (1).
Limits (2) tell us that, for each positive number &, there exist positive numbers &; and
8, such that '

(3) |t — ugl < % whenever 0 < /(x — x0)2 + (¥ — Y02 < &,
and
{4) [v —vg| < g whenever 0 < /(x — x)2 + (y — ¥0)? < 65.

Let § denote the smaller of the two numbers &, and 8,. Since

|(u + iv) — (g + ivg)| = [{u — up) + (v — vp)| < lu — ugl + |v = vol

and

V= x0)? + (3 — 30)? = x = %) + i (y = yo)| = |(x + i) — (x5 + ivo),

it follows from statements (3) and (4) that

: £ &
[(t +iv) — (g4 ivg)| <=+ -=¢
) = (g + ivg)] 573
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whenever
0<|(x+iy)— (xg+ivg)| < 8.

That is, limit (1) holds.
Let us now start with the assurnption that limit (1) holds. With that assumption,
we know that, for each positive number ¢, there is a positive number § such that

(5) ) [(u +iv) — (ug+ivg)| < ¢
whenever

(6) 0 <|(x +iy) — (xg +ixg)| < 6.
But

fu — up| < |( —ug) +i(v — vo)| = [(u + iv) — (ug + ivg)l,
lv — vl <1 — ug) +i(v — vp) = [(u + iv) — (uy + ivg)|,

and

[ +iy) = (o + iyl = 1(x —xp) + iy = yo)| = V/(x — %)% + (¥ — yp)2.
Hence it follows from inequalities (5) and (6) that
lu—ugl <& and |v—wy <e

whenever

0 <(x—x0)2 + (v — yp)? < 8.

This establishes limits (2), and the proof of the theorem is compléte.

Theorem 2. Suppose that

(N lim f(z)=wy and lim F(z) = W,.
Z=*+Zg I=ip

Then

(8) _ Z&ngﬂ[f(Z) + F(2)] = wy + Wy,

9 zli)ﬂgo[f(z)F(Z)] = woWy;

and, if Wy # 0,

(10) | tim L@ _ %o

=2 F(z) WO '
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This important theorem can be proved directly by using the definition of the limit
of a function of a complex variable. But, with the aid of Theorem 1, it follows almost
immediately from theorems on limits of real-valued functions of two real variables.

To verify property (9), for example, we write

F@y=ulx, y)+ivix,y), F@=U,y)+iVix,y),
ZU="-):0+1')’0,‘ w0:u0+iv0, WO=U0+fVO.

Then, according to hypotheses (7) and Theorem 1, the limits as (x, y) approaches
(xg, yp) of the functions u, v, U, and V exist and have the values ug, vg, Uy, and V,,
respectively. So the real and imaginary components of the product

FROF@D) =@l —vV)+i@U +uV)

have the limits ugl/y — vyVy and vyUy + ugVp, respectively, as (x, y) approaches
(xg, ¥o). Hence, by Theorem 1 again, f(z)F(z) has the limit

(ugUpy — v V) + i (voUg + ugVp)

as z approaches zg; and this is equal to woW;. Property (9) is thus established,

Corresponding verifications of properties (8) and (10) can be given.
It is easy to see from definition (2), Sec.14, of limit that

limc=c and lim z =z,
7=+ I

where z; and ¢ are any complex numbers; and, by property (9) and mathematical
tnduction, it follows that

| lim "=gf  (n=12..).

So, in view of properties (8) and (9), the limit of a polyndmial -
P@y=ap+az4a’+- +a,"
as z approaches a point z is the value of the polynornial at that point:

(113 lim P(z) = P(z;).
= .

16. LIMITS INVOLVING THE POINT AT INFINITY

It is sometimes convenient to include with the complex plane the point at infinity,
denoted by oo, and to use limits involving it. The complex plane together with this
point is called the extended complex plane. To visualize the point at infinity, one can
think of the complex plane as passing through the equator of a unit sphere centered at
the point z = 0 (Fig. 26). To each point z in the plane there corresponds exactly one
~ point P on the surface of the sphere. The point P is determined by the intersection of
the line through the point z and the north pole N of the sphere with that surface. In
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FIGURE 26

like manner, to each point P on the surface of the sphere, other than the north pole N,
there corresponds exactly one point z in the plane. By letting the point N of the sphere
correspond to the point at infinity, we obtain a one to one correspondence between the
points of the sphere and the points of the extended complex plane. The sphere is known
as the Riemann sphere, and the correspondence is called a sterepgraphic projection.

Observe that the exterior of the unit circle centered at the origin in the complex
plane corresponds to the upper hemisphere with the equator and the point N deleted.
Moreover, for each small positive number ¢, those points in the complex plane exterior
to the circle [z| = 1/¢ correspond to points on the sphere close to N. We thus call the
set (z| > 1/& an e neighborhood, or neighborhood, of oo,

Let us agree that, in referring to a point z, we mean a point in the finize plane.
Hereafter, when the point at infinity is to be considered, it will be specifically men-
tioned, :

- A meaning is now readily given to the statement
lim f(z)=uwy
[ ]
when either z; or wy, or possibly each of these numbers, is replaced by the point
at infinity. In the definition of limit in Sec. 14, we simply replace the appropriate
neighborhoods of zj and w, by neighborhoods of oo, The proof of the following
theorem illustrates how this is done.

Theorem. If z and wy are points in the 7 and w planes, respectively, then

' . , ) . 1
(1) zlgrzlo f@) =0 :f and only if le}ﬂzlﬂ m =0
and
(2) , im f(z)=wy if and only if lim f(l) = wp.
=00 z—0 z
Moreover,

' 1
3 li =00 ifandonlyif i
(3} Jim f(z) =00 if and only if lim 7079



50  AwnaLyTic FuncTions CHAP. 2

We start the proof by noting that the first of limits (1) means that, for each positive
number &, there is a positive number & such that

(4 | F(z)| > 1 whenever 0 < |z~ zp] < 8.
€

That is, the point w = f(z) lies in the ¢ neighborhood |w| > 1/e of oc whenever 7 lies
in the deleted neighborhood 0 < |z — zo! < 6 of Zg- Since statement (4) can be written

1 5

f2)
the second of limits (1) foliows.

The first of limits (2) means that, for each positive number £, a positive number
& exists such that

<& whenever 0<lz—zp) <38,

(5) , |f(z) —wy| <& whenever jz|=> El

Replacing z by 1/z in statement (5) and then writing the result as

Q)

we arrive at the second of limits (2).
Finally, the first of limits (3) is to be interpreted as saying that, for each positive
number &, there is a positive number 8 such that

<€ whenever 0 <|z~-0] <38,

(6) [ fiz)] > -:: whenever |z} > %

When z is replaced by 1/z, this statement can be put in the form

f(1/2)

and this gives us the second of limits (3).

1
‘ —O‘<s whenever (< |z —0| < §;

'EXAMPLES. Observe that

L dz+3 . . z+1
lim =00 since lim =0
==1 z41 —=-=liz+3
and ‘ ‘
lim 22t =2 since lim %—f- =i z—tﬁ =

= J1m =
00 741 =0 (I/zy+1 =0 142
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Furthermore,
3_ 2 3
im 22 1=c>o since  Jim Ll/L)-—_*_—lzlim 1tz =0.
z—oo z2 4] =0 (2/z5) —1 502 -~73

17. CONTINUITY

A'function f is continuwous at a point z if all three of the foliowing conditions are
satisfied:

(D lim f(z) exists,
=2y

2 Szp) exists,

(3) | lim f@) = £(zo)-

Observe that statement (3) actually contains statements (1) and (2), since the existence
of the quantity on each side of the equation there is implicit. Statement (3) says that,
for each positive number &, there is a positive number & such that

4) [f(z) — fzg)l <& whenever |z.—zg| <8.

A function of a complex variable is said to be continuous in a region R if it is
continuous at each point in R.

If two functions are continuous at a point, their sum and product are also continu-
ous at that point; their quotient is continuous at any such point where the denominator
is not zero. These observations are direct consequences of Theorem 2, Sec. 15. Note,
too, that a polynomial is continuous in the entire plane because of limit (1 1), Sec. 15.

We turn now to two expected properties of continuous functions whose verifica-
tions are not so immediate. Qur proofs depend on definition (4), and we present the
results as theorems.

Theorem 1. A composition of continuous functions is itself continuous.

A precise statement of this theorem is contained in the proof to follow. We let
W = f(z) be a function that is defined for all z in a neighborhood |z — zy) < 8 of a
point zg, and we let W = g(w) be a function whose domain of definition contains the
image (Sec. 12) of that neighborhood under f. The composition W = g[ £(z)]is, then,
defined for all z in the neighborhood |z — zj| < 8. Suppose now that £ is continuous at
g and that g is continuous at the point f(zg) in the w plane. In view of the continuity
of g at f(zg), there is, for each positive number g, a positive number y such that

lg[f ()] — glf (z)ll <& whenever [f(z) — f(zo)| <.
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{See Fig. 27.) But the continuity of f at Zp ensures that the neighborhood {z — zg| < &
can be made small enough that the second of these inequalities holds. The continuity
of the composition g[ f (z)] is, therefore, established.

Theorem 2. Ifafunction f(z7) is continuous and nonzero at a point 2, then f(z) #0
throughout some neighborhood of that point.

Assuming that f(z) is, in fact, continuous and nonzero at Zg,» We can prove
Theorem 2 by assigning the positive value | f{z0}{/2 to the number ¢ in statement
(4). This tells us that there is a positive number § such that

Iz — fzg) < Lf%@ whenever |z — z5| < 4.

So if there is a point z in the neighborhood |z — zg| < & at which f(z) = 0, we have
the contradiction

1)l < 'i@;

and the theorem is proved:
The continuity of a function

(5} f@) =ulx, ) +ivix, y)
1s closely related to the continuity of its component functions u(x, y) and v(x, y).

We note, for instance, how it follows from Theorem 1 in Sec. 15 that the Junction
(5) is continuous at a point 7o = (x,, Yo) if and only if its component functions are
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continuous there. To illustrate the use of this statement, suppose that the function (5) is
continuous in a region R that is both closed and bounded (see Sec. 10). The function

VI P+ v R

is then continuous in R and thus reaches a maximum value somewhere in that region.*
That is, f is bounded on R and | f(z}| reaches a maximum value somewhere in R.
More precisely, there exists a nonnegative real number M such that

(6) |f(z)| <M forallzinR,

where equality holds for at least one such z.

EXERCISES

1. Use definition (2), Sec. 14, of limit to prove that
=2
(@) lim Rez=Rezy; (b)) limz=7%; (c) lim= =0.
Z=rZg . fandAl} =0z

2. Let g, b, and ¢ denote complex constants. Then use definition (2), Sec. 14, of limit to
show that

(@) lim (az +b) =azg+b; (b} lim (> + &) =2} +c;
I—+Ip =+

{c) lir]n x+iQe+y]=14+1 (z=x+iy)
2= -1

3. Letn be a positive integer and let P(z) and Q(z) be polynomials, where Q(z,) # 0. Use
Theorem 2 in Sec. 15 and limits appearing in that section to find

1 izt —1 . P(z)
— R 1 H -
(a) 2131;0 g (20 #0) (b) lim = (c) 311{20 0
Ans.(a) U/zg, (B) 05 (2) P(z)/Q(zq).

4. Use mathematical induction and property (9), Sec. 15, of limits to show that

lim z" = zg
g )

when n is a positive integer (n = 1, 2, .. .).

5. Show that the limit of the function
: 2
ﬂw=(é)
z

as z tends to 0 does not exist. Do this by letting nonzero points z = (x, () and z = (x, x}
approach the origin. [Note that it is not sufficient to simply consider points z = (x, 0)
and z = (0, y), as it was in Example 2, Sec. 14.]

* See, for instance, A, E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 125-126 and p. 529,
1983.
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6. Prove statement (8) in Theorem 2 of Sec. 15 using

(a) Theorem 1in Sec. 15 and properties of limits of real-valued functions of two real
variables: :

(b) definition {2), Sec. 14, of limit.
7. Use definition (2), Sec. 14, of limit to prove that

if  lim f() =wy. then lim |f{z)| = [t
=z

I—=Zp

Suggestion; Observe how inequality (8), Sec. 4, enables one to write

LG = wall < 1£(2) — .
8. Write Az = 7 ~ z; and show thar ‘

lim f(z)=w, ifand onlyif lim f(zy+ Az) = .
Mg} Az—D

9. Show that

lim f(z)e(z)=0 if ling fl@)=0
I—=Ip

=

and if there exists a positive number such that |g(z)| < M for all 7 in some neighbor-
hood of z;,

10, Use the theorem in Sec. 16 to show that

. 2
(@) lim =4 (b lim =oc; (o) lim St o

P00 (z —1)2 ~1(z — 1) 200 7z — ]
11, With the aid of the theorem in Sec. 16, show that when

az+ b

T(z) =
@) cz+d

(ad — bc #£0),

(@) lim Tz} = o0 ife=0;
=00

) lim T=2and lim T()=oo ife # 0.
=00 c i—=~d/c
12. State why limits involving the point at infinity are unigue,

13. Show that a set S is unbounded (Sec. 10) if and only if every neighborhood of the point
at infinity contains at least one point in §.

18. DERIVATIVES

Let f be a function whose domain of definition contains a nei ghborhood of a point z;,.
The derivative of f at zq, written S'(zp), is defined by the equation

1) r'ay = jim JO=T ),
‘ —

provided this limit exists. The function f is said to be differentiable at zp when its
derivative at zq exists.



SEC, I8 . DERIVATIVES 55

By expressing the variable z in definition (1) in terms of the new complex variabie
Az=1z—zp,

we can write that definition as

. az) — flzp)

! = ] f(zo + )

2 f(zp) Jim Ar

Note that, because f is defined throughout a neighborhood of z,, the number
f (zg+ A2z)

is always defined for | Az| sufficiently small {Fig. 28),

y
- f—-\\\
’ N
4 \
{ \
i 4 !
\ /1
1w \ ///
DL Tm=-T
'LQ*
0 *  FIGURE 28

When taking form (2) of the definition of derivative, we often drop the subscript
on z; and introduce the number

Aw= f{z4+ Az) — f(2),

which denotes the change in the value of f corresponding to a change Az in the point
at which f is evaluated. Then, if we write dw/dz for f'(z), equation (2) becomes

d
3 aw _ H gu_)
dz A0 Az
EXAMPLE 1. Suppose that f(z) = z°. At any point z,

2_ .2
lim ﬂ: lim M

= lim (2 Az) =12z,
Az—0 Az Az—=0 Az Aémo( 2+ A7) z

since 2z + Az is a polynomial in Az. Hence dw/dz = 2z, or f/(z) = 2z.

EXAMPLE 2. Consider now the function f(z) = |z|%. Here

Aw  z+ Az — |z (24 ADG+Bz) — 2T R Az
- = = =r+Az+z—.
Az Az Az Az
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Ay
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FIGURE 29

If the limit of Aw/Az exists, it may be found by letting the point Az = (Ax, Ay)
approach the origin in the Az plane in any manner. In particular, when Az approaches
the origin horizontally through the points (Ax, 0) on the real axis (Fig. 29),

Az=Ax+i0=Ax — 0= Ax +i0= Az.

In that case,

Aw —

— =7+ Az+4z.

Az
Hence, if the limit of Aw/Az exists, its value must be 7 4 z. However, when Az
approaches the origin vertically through the points (0, Ay) on the imaginary axis, so
that '

Az=0+iAy=—(0+iAy)=7Az,
we find that ‘
Aw —
— =7+ Az —1z.
Az I+ Az—z

Hence the limit must be ¥ — z if it exists. Since limits are unique (Sec. 14), it follows
that ‘

I+z=%7-—1z,

orz =0, if dw/dz is to exist.

To show that dw /dz does, in fact, exist at z = 0, we need only observe that our
expression for Aw/ Az reduces to Az when z = 0. We conclude, therefore, that du /dz
exists only at z = 0, its value there being 0.

Exarhple 2 shows that a function can be differentiable at a certain point but
nowhere else in any neighborhood of that point. Since the real and imaginary parts
of f(z) =z are

(4) u(r, y)=x>+y% and uv(x,y)=0,
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respectively, it also shows that the real and imaginary components of a function of a
complex variable can have continuous partial dertvatives of all orders at a point and
vet the function may not be differentiable there.

The function f(z) = |z|? is continuous at each point in the plane since its com-
ponents (4) are continuous at each point. So the continuity of a function at a point
does not imply the existence of a derivative there. It is, however, true that the existence
of the derivative of a function at a point implies the coniinuity of the function at that
point. To see this, we assume that f/(z;) exists and write

tim (@) = el = Jim Z2ZIED i o 2 = £y 0=,

] =2 Z~*Zn

from which it follows that
lepgo F(2) = f(zp).

This is the statement of continuity of f at zg (Sec. 17).

Geometric interpretations of derivatives of functions of a complex variable are
not as immediate as they are for derivatives of functions of a real variable. We defer
the development of such interpretations until Chap. 9.

19, DIFFERENTIATION FORMULAS

The definition of derivative in Sec. 18 is identical in form to that of the derivative of a
real-valued function of a reat variable. In fact, the basic differentiation formulas given
below can be derived from that definition by essentially the same steps as the ones used
in caleulus. In these formulas, the derivative of a function f at a point z is denoted by
either

d ’
d—zf(z) or f'(z},

depending on which notation is more convenient.

Let ¢ be a complex constant, and let f be a function whose derivative exists at a
point z. It is easy to show that

d d

=0, Li=1, Lif@i=cf @
dz

1 L=
) dzc dz

Also, if n 15 a positive integer,
a’ .
(2) __Zn =nz"_1.
dz

This formula remains valid when » is a negative integer, provided that z 5 0.
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If the derivatives of two functions f and F exist at a point z, then

3) f—zlf(z) +F@I= f'@) + F @),

() | d%[f(zmz)} — (QF @+ FOFG:

and, when F(z) # 0,

5) d [f(Z)} _FRf R - fRF @
dz | F{2) [F(z))2

- Let us derive formula (4). To do this, we write the following expression for the
change in the product w = f(z) F(z):

Aw= f(z+ A2)F(z+ Az) — f()F(2)
= f(D)[F(z + Az) — FO1+ [z + AZ) — f(2))F (z + Az).
Thus

% _ f(z)F(Z + Az) — F(z) + Flz+ AZ) — f{2)
Az Az Az

Fiz 4+ A2

and, letting Az tend to zero, we artive at the desired formula for the derivative of
f(z)F(z). Here we have used the fact that F is continuous at the point z, since F'(z)
exists; thus F(z + Az) tends to F(z) as Az tends to zero (see Exercise 8, Sec. 17).

There is also a chain rule for differentiating composite functions. Suppose that f
has a derivative at zg and that g has a derivative at the point f(zg). Then the function
F(2) = g[f(z)] has a derivative at zy, and :

) F'(zo) = g'Lf (zo)1f (20)-
If we write w = f(2) and W = g(w), so that W = F(z), the chain rule becomes
W _dW dw

dz dw dz

EXAMPLE. To find the derivative of (272 + i)5, write w = 2z2 4 and W = w°,
Then

d
E—(zzz + )% = 5wtz = 20227 + ).
4

To start the proof of formula (6), choose a specific point z at which f "zo)'
exists. Write wg = f(zp) and also assume that g'(wy) exists. There is, then, some
¢ neighborhood |w — wyi < & of wy such that, for all points w in that neighborhood,
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we can define a function ® which has the values ®(wy) =0 and

g(w) — glwy)
w — Wy

(M | P (w) = g'(wy) when w#wyp.

Note that, in view of the definition of derivative,

(8) im ®(w) = 0.

w—wy

Hence ¢ is confinuous at wy.
Now expression (7) can be put in the form.

(9 g(w) — g(wp) = [g'(wp) + P w —wg)  (lw~— w0|-< £),

which is valid even when w = wy; and, since f’(zy) exists and f is, therefore, .

continuous at zg, we can choose a positive number & such that the point f(z) lies in
the £ neighborhood |w — wy| < & of wy if z lies in the § neighborhood {z — zg| < & of
zo- Thus it is legitimate to replace the variable w in equation (9) by f(2) when z is any
point in the neighborhood |z — zp} < 8. With that substitution, and with wq = Flzoh
equation (9) becomes

a0y BLOIZETEIN_ (o pp+ oty

Z— Iy

I—
(0 < iz — zof <8},

where we must stipulate that z # zg $o that we are not dividing- by zero. As already
noted, f is continuous at zg and @ is continuous at the point wy = f(zo}. Thus the
compesition @[ 7(z)]is continuous at zg; and, since & (wg) =0,

lim ®[f(z)]=0.
>y

So équation (10) becomes equation (6) in the limit as z approaches zq.

EXERCISES
1. Use results in Sec. 19 {o find f'(z) when
(@) fz) =32 — 2244 (b) f(z) = (1 — 427
_z-1 e _ a4y
(c} flz)= P (z#-1/2); (@) f(a)= % (z # 0.

2. Using results in Sec. 19, show that
{a) apolynomial

P()=ag+aiz +a%+ - +a," (a, £0
of degree r (n > 1) is differentiable everywhere, with derivative

Plz)= a;+2a;z4+ -+ nanzn—l;



60

ANALYTIC FUNCTIONS CHAP. 2

{b) the coefficients in the polynomial P(z) in part () can be writien

' 7 {n)
ap = P(0), a,:%l ——m a =P—(—O—).

adr = e
T gy C o n!

. Apply definition (3), Sec, 18, of derivative to give a direct proof that

f’(z)z—zlz- when f(z):% (2 0).

. Suppose that f(zq) = g(zp) = 0 and that f"(z;) and g'(zy) exist, where g/(zg) # 0. Use

definition {1), Sec. 18, of derivative to show that

im £ _ /o)
=gz} g'(zg)

. Derive formula.(3), Sec. 19, for the derivative of the sum of two functions.

6. Derive expression (2), Sec. 19, for the derivative of z" when » is a positive integer by

using

(a) mathematical induction and formula (4), Sec. 19, for the derivative of the product of
two functions;

(B) definition (3), Sec. 18, of derivative and the binomial formula (Sec .3).

. Prove that expression (2), Sec. 19, for the derivative of " remains valid when r is a

negative integer (n = —1, —2, . ..}, provided that z 3 0.
Suggestion. Write m = —n and use the formula for the derivative of a quotient of
two functions.

- Use the method in Example 2, Sec. 18, to show that f'(z) does not exist at any point z

when

(@) flui=z; (B flz)=Rez; () f(z)=Imz.

. Let f denote the function whose values are

22
f) = ? when z#0,

0 when z=0.

Show that if z = 0, then Aw/Az = 1 at each nonzero point on the real and imaginary
axes in the Az, or Ax Ay, plane. Then show that Aw/Az = ~1 at each nonzero point
(Ax, Ax) on the line Ay = Ax in that plane. Conclude from these observations that
£/(0) does not exist. (Note that, to obtain this result, it is not sufficient to consider only
horizontal and vertical approaches to the origin in the Az plane.)

20. CAUCHY-RIEMANN EQUATIONS

In this section, we obtain a pair of equations that the first-order partial derivatives of
the component functions 1 and v of a function

M

S =ulx, y) +iv(x, y)



